A new piecewise linear Chen system of fractional-order; Numerical approximation of stable attractors

نویسندگان

  • Marius-F. Danca
  • Avram Iancu
چکیده

In this paper we present a new version of Chen’s system — a piecewise linear Chen system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also mulistability, i.e. the existence of small parameter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Close interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program

  The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...

متن کامل

A numerical study of fractional order reverse osmosis desalination model using Legendre wavelet approximation

The purpose of this study is to develop a new approach in modeling and simulation of a reverse osmosis desalination system by using fractional differential equations. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. Examples are developed to illustrate the fractional differential techniq...

متن کامل

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

Synchronization and stabilization of Multi-scroll Integer and fractional Order Chaotic attractors Generated using trigonometric Functions

Sigmoidal functions are usually used to characterize the behavior of dynamical systems, in particular, for neural networks. Recently, multilevel piecewise linear functions have been employed in cellular neural networks (CNN). In this paper, we first use the inverse trigonometric function, tan−1(x), to generate a series of trigonometric functions to obtain one-, twoand three-directional multi-sc...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015